Compact Finite Difference Schemes on Non-uniform Meshes. Application to Direct Numerical Simulations of Compressible Flows

نویسندگان

  • L. GAMET
  • F. DUCROS
  • F. NICOUD
  • T. POINSOT
چکیده

In this paper, the development of a fourth(respectively third-) order compact scheme for the approximation of first (respectively second) derivatives on non-uniform meshes is studied. A full inclusion of metrics in the coefficients of the compact scheme is proposed, instead of methods using Jacobian transformation. In the second part, an analysis of the numerical scheme is presented. A numerical analysis of truncation errors, a Fourier analysis completed by stability calculations in terms of both semiand fully discrete eigenvalue problems are presented. In those eigenvalue problems, the pure convection equation for the first derivative, and the pure diffusion equation for the second derivative are considered. The last part of this paper is dedicated to an application of the numerical method to the simulation of a compressible flow requiring variable mesh size: the direct numerical simulation of compressible turbulent channel flow. Present results are compared with both experimental and other numerical (DNS) data in the literature. The effects of compressibility and acoustic waves on the turbulent flow structure are discussed. Copyright © 1999 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

High Order Finite Difference Schemeson Non-uniform Meshes with GoodConservation Properties

Numerical simulation of turbulent flows (DNS or LES) requires numerical methods that are both stable and free of numerical dissipation. One way to achieve this is to enforce additional constraints, such as discrete conservation of mass, momentum, and kinetic energy. The objective of this work is to generalize the high order schemes of Morinishi et al. to non-uniform meshes while maintaining con...

متن کامل

On the construction of high order finite difference schemes on non-uniform meshes with good conservation properties

Numerical simulation of turbulent flows (DNS or LES) requires numerical methods that can accurately represent a wide range of spatial scales. One way to achieve a desired accuracy is to use high order finite difference schemes. However, additional constraints such as discrete conservation of mass, momentum, and kinetic energy should be enforced if one wants to ensure that unsteady flow simulati...

متن کامل

On Compact High Order Finite Difference Schemes for Linear Schrödinger Problem on Non-uniform Meshes

In the present paper a general technique is developed for construction of compact high-order finite difference schemes to approximate Schrödinger problems on nonuniform meshes. Conservation of the finite difference schemes is investigated. The same technique is applied to construct compact high-order approximations of the Robin and Szeftel type boundary conditions. Results of computational expe...

متن کامل

Numerical Investigation on Compressible Flow Characteristics in Axial Compressors Using a Multi Block Finite Volume Scheme

An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme for Conservat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998